Duplicate-free Generation of Alternatives in
Transformation-based Optimizers

Arjan Pellenkoft!+?
arjan@cwi.nl

César A. Galindo-Legaria'
cesarg@microsoft.com

Martin Kersten?

mkQ@cwi.nl

L Microsoft
One Microsoft Way, Redmond, WA 98052-6399 USA

tOWI
P. O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

Transformation-based optimizers that explore a
search space ezhaustively usually apply all possible
transformation rules on each alternative, and stop
when no new information is produced. In general,
different sequences of transformation rules may
end up deriving the same element. The optimizer
must detect and discard these duplicate elements
generated by multiple paths.

In this paper we consider two questions: How
bad is the overhead of duplicate generation? And
then, how can it be avoided? We use a restricted
class of join reordering to illustrate the problem.

For the first question, our analysis shows that
as queries get larger, the number of duplicates is
several times that of the new elements. And even
for small queries, duplicates are generated more
often than new elements. For the second question,
we describe a technique to avoid generating dupli-
cates, based on keeping track of (a summary of) the
derivation history of each element.

Keywords Query optimization, Transformation-
based optimization, Exhaustive search.

1 Introduction

Transformation-based query optimizers have been
proposed as a modular, extensible tool to incor-
porate easily new operators and execution alterna-
tives in the query optimization process [GCD'94].
But note that, in general, the same execution plan
can be derived through different sequences of trans-
formation rules, leading to duplicates. Duplicates
are not an issue for strategies that explore only a
small fragment of the search space, especially if the
elements are generated probabilistically, because
it is unlikely that the same element be generate

Proceedings of the Fifth International Confer-
ence on Database Systems for Advanced Appli-
cations, Melbourne, Australia, April 1-4, 1997.

twice [SG88, IK90, TK91, GLPK94] . However,
for optimizers that generate the complete space of
alternatives, dealing with duplicates is crucial.

To generate the complete space of alternatives,
the general algorithm is to maintain a set of visited
plans. All transformation rules are applied on
visited plans, adding the results to the set if they
are new. When no new plans can be generated, we
have explored the complete search space (provided
the set of transformation rules is complete). Every
time a duplicate plan is found, the time that it
took to generate it and then find it in the set of
visited plans is part of the overhead of a generic
transformation-based search.

How expensive is this overhead? How frequently
are we generating duplicates? We refine our
analysis of duplicates later on, for a more realistic
optimization framework. For now, consider the
following simple graph model to get a sense of
the dimension of the problem. The number of
duplicates generated depends on the the size of the
search space, n, and the number of neighbors, b;, of
each state s; (a state s; is a neighbor of s; if there
is a transformation rule that generates s; from s;).
Trying each transformation results in generating:
> | b; states. Assuming the number of neighbors
for each state is the same (b =b; = ... = b,,) we get
bxn generated states. Since there are only n states,
the number of duplicates generated is n * (b — 1).
Only 1 out of every b plans generated is new, and
(1 — %) of the plans generated — i.e. most of them
as b increases — are duplicates. A considerable
efficiency improvement can be achieved by avoiding
the generation of those duplicates.

In particular, in a query joining 5 relations,
each operator tree has 4 to 7 neighbors, using
the “standard” associativity and commutativity
rules to generate all “bushy” join orders. If we
explore the space of alternatives for this query
exhaustively, detecting and discarding duplicates,
then we’ll be discarding between 75% and 86%

of all plans we generate! For larger queries, the
number of neighbors of each plan increases, and so
does the proportion of duplicates.

In this paper we show that it is possible to
generate the space efficiently — i.e. without
generating duplicates — within the framework of
an extensible transformation-based optimizer. The
technique described is based on conditioning the
application of rules on the derivation history of
an element. Each plan maintains a set of rules
that can still be applied on it without generating
duplicates. We illustrate the approach with a
restricted case of join reordering.

The paper is organized as follows.
tion 2 we describe the generation of alternatives
in Volcano [GM93], which is representative of
transformation-based query optimizers. Section
3 describes how, within the same framework, al-
ternative join orders can be generated without
duplicates, for acyclic query graphs. Finally our
conclusions are given in Section 4.

In Sec-

2 Optimizer Framework

To show how duplicate free, transformation based
generation of alternatives can be incorporated into
modern query optimizers, the exploration algo-
rithm of Volcano-type optimizers is described in
some detail. The Volcano system consists of a
single optimization layer to create a truly flex-
ible optimizer which can easily be adapted to
new data-models and algebras. The optimizer’s
choices are represented as algebraic equivalences
— transformation rules — and can be changed
easily. One of the Volcano’s search strategies is
an exhaustive generation of alternatives, this is
achieved by applying transformations until no new
solutions are generated.

During this exhaustive generation, information
about the alternatives explored is stored in a look-
up table. This table is an efficient storage structure
for storing (partial) search spaces [GCD194]. The
following sections describes this look-up table and
its use in more detail.

2.1 Look-up table

A memory efficient representation of the search
space is used to ameliorate the combinatorial ex-
plosion of alternative join orders. For a completely
connected join query with n relations the number
of alternatlve evaluation orders is known to be

(2n=2)! 11793, GLPK95). A completely connected

n—1)
q(uery of 7 relations then already leads to 665280
alternative evaluation orders.

The main idea of the look-up table is to avoid
replication of subtrees by using shared copies only.
It is organized as a network of equivalence classes

(or simply classes). Each class is a set of operators
which all generate the same (intermediate) result.
The inputs for the operators are classes which can
be interpreted as “any operator of that class can
be used as input”.

abc = [ab] > [¢]; [a] < [be]; [b] > [ac];
[¢] o< [ab]; [be] b [a]; [ac] > [B].
ab = [a] b< [b]; [b] o< [a].
= [b] ba [c]; [c] ba [B].
ac = [a] & [c]; [¢] &< [a].
a = get(A).
b = get(B).
c = get(C).

Figure 1: The complete look-up table for {A —
B,A-C,B-C}.

GG

[abc] =

- Wb]}

//}71

i Wb}ﬁ

-
P

Figure 2: Operator tree extraction from a look-up
table.

For example, the look-up table for the 12
alternatives of a query whose fully connected graph
is @ ={A - B,A— C,B— C} is shown in Figure
1. It has 7 equivalence classes, namely “abc”,
“ab”, “bc”’ Cﬁac”’ “a”’ “b”, “C”, With the ﬁrst
class containing 6 join operators. For convenience,
we name the classes with the relations that they
combine. The first join operator of class “abc” has
as input the classes “ab” and “c”.

An operator tree is obtalned from a look-up
table by choosing a specific operator at each level.
For example, the tree from Figure 2 is extracted
from the look-up table in Figure 1 by always
selecting the first operator from a class.

In comparison to the total number of feasible
evaluation orders the look-up table is an efficient
way of storing the explored alternatives. However,
the size of the look-up table is still considerable.
Theorem 1 considers the completely connected

graph to determine the upper bound on the size
of the look-up table in case bushy evaluation
orders are allowed. The look-up table is the
most important and largest data structure used, so
Theorem 1 is also an upper bound on the memory
requirements of such optimizers.

Theorem 1. The mazimum number of join op-
erators needed to encode all alternative evaluation
orders for a query of n relations is: 3" —2"t14+n+1

Proof. The upper bound on the size of the look-
up table is determined by considering a query
topology with the largest number of alterna-
tive evaluation orders: A completely connected
query on n relations. First, we compute the
number of equivalence classes. Since each possi-
ble non-empty subset of base relations will occur
as intermediate result the number of equivalence
n — n

)= 2n — 1.

An equivalence class for k base relations de-
scribes all possible roots for these k relations.
Every partition of the set of the k relations into
left /right non-empty subsets corresponds to an
operator in this class, so the number of elements
in a class is 2¥ —2. Now the number of operators
in the look-up table is the sum of all elements of

n

all classes, which is: > "¢ _, (k) (2*-2)+n =
3n -2l 4 1. [

classes is: > p_;

Also [OL90] considered the number of feasible
join orders for completely connected query graphs
when bushy evaluation orders are allowed. They
found the maximum number of join operators to be
(3" —27*1 4 1)/2. The difference is caused by the
fact that the look-up table distinguishes between
the left and right input of join operators and
generates a class for each of the n base relations.

Relations | Join orders | Operators | Duplicates
2 2 4 1
3 12 15 10
4 120 54 71
5 1680 185 416
6 30240 608 2157
7 665280 1939 10326

Figure 3: Number of operators needed to represent
all alternative evaluation orders for a completely
connected query of n relations.

For completely connected queries of several
sizes, Figure 3 shows the number of alternative
join orders and the number of operators needed to
encode those trees using a look-up table. The last

column shows the number of duplicates generated
and is explained in Section 2.4

2.2 Exploration process

To generate all alternative join evaluation orders,
starting from a single join tree, we need two basic
transformation rules, namely: commutativity (z b
y) — (y > z) and associativity ((z < y) < 2) —
(z > (y > z)). This rule set is known to be
complete, i.e. these rules are sufficient to generate
all possible join evaluation orders for a given query.

A complete look-up table — encoding a com-
plete space — is constructed by recursively explor-
ing the roots of operator trees, starting with an
initial join evaluation order. Exploring an operator
is done by exhaustively applying all transformation
rules to generate all alternatives. This method
is similar to the general approach as described in
Section 1.

Figure 4 shows the exploration algorithm. The
initial look-up table is created by walking down a
join tree and creating a class for each join operator.
This join tree is selected arbitrarily from the space
of valid join trees. To start the exploration we call
EXPLORE-CLASS(C), with C being the root class of
the initial lookup table.

EXPLORE-CLASS(C) {
while not all elements in C
have been explored {
pick an unexplored operator e € C
EXPLORE-OPERATOR (e) ;
mark e explored;

}
}

EXPLORE-OPERATOR(e) {
EXPLORE-CLASS(left-child(e));
EXPLORE-CLASS(right-child(e)) ;
for each rule R {

for each partial tree é such that
€ is extracted from the
look-up table;
the root of € is e; and
€ matches the pattern of R
2 := apply R on é&;
if ¢ look-up table
add # to lookup-table;
(place the root of & in the
same class as e)

Figure 4: Exploration algorithm

In general, the application of a transformation
rule can generate an operator which is already

present in the look-up table. For example, applying
the commutativity rule twice reproduces the orig-
inal operator. So, before inserting a new operator
into the look-up table we have to make sure it is not
already present. A hash table is used to speed-up
the detection of duplicates.

2.3 Exploration example

To see how duplicates are generated an action
trace is described in detail. For the completely
connected query on the relations “a, b, ¢,” Figure 5
shows the look-up tables before and after exploring
operator [ab] > [c]. In the “before” look-up
table all children, “ab” and “c”, have been fully
explored. The transformation rules (see Section
2.2) generate the following new operators, when
applied to operator [ab] > [c].

Commutativity: ([ab] &< [c]) creates ([¢] b [ab])
which is added to the class “abc”.

Associativity: ([ab] < [¢]) does not match, the
left child is a class and should be a tree. This
is resolved by extracting a partial trees for the
left class “ab.”

[a] > [b]: First tree (([a] o<t [b]) > [¢]) is
extracted. Now the rule matches and is
applied. The new tree ([a] <t ([b] &< [¢]))
is generated, and added to the look-up
table in class “abc”. The subexpression
([b] >« [¢]) starts a new class “bc” since it
didn’t appear in the look-up table.

[b] > [a]: Second tree (([b] b [a]) > [¢]) is
extracted. It matches the rule, so it is
applied. The new tree generated is ([b] <
([a] >« [¢])) and is added to the look-up
table. The subexpression [a] &< [¢] starts
a new class “ac”.

Before
abc=[ab]]c].

After

abc=[ab][c]; [¢] 1 [ab];
[a]>< [be]; [b] >aac];
bel o] [ac] < B

ab= [a]o< 8] [1]>4a].

bo= [B]o< el [c] <],

ac= [a]>]c]; [e]]a).

ab= [aloa[]; [b]o<al.

a= get(A). a= get(A).
b= get(B). b= get(B).
c= get(C). c= get(C).
Figure 5: look-up table before and after explo-

ration.

The exploration process is continued by ap-
plying transformation rules to the newly created
operators. Now, duplicates are generated. Before
the new operators ([c] > [ab], [a] > [be], and

[b] > [ac]) of the root class “abc” can be explored,
all their children (“a”,”b”,”c¢” “ab”,”bc” and “ac”)
must be fully explored. This results in two new
operators, [c] > [b] and [¢] &< [a], which are added
to the appropriate classes.

To the new operators only the commutativity
rule applies, which results in the operators [ab] <
[c], [be] < [a] and [ac] <t [b] of which [ab] > [c]
already exists. The new operators are added to
the look-up table and explored. Both associativity
and commutativity can be applied to the operators
[bc] > [a] and [ac] < [b], which results in 6
operators. All these operators were already stored
in the look-up table. So, during the exploration of
class “abc”, 5 new operators and 7 duplicates were
generated. In Figure 6 the operator generation
graph shows which operators are generated by the
commutativity rule (R.) and the associativity rule
(R,). The bold operators are the duplicates.

lab]sa[d—Fen (o] afab]—-2ex [ab]pa[e]

[a] > [be] —25 fbe] s [a] 2=+ [a] b [be]

R, b ac
s -

[6] 0[] —Eevac] s [t]-2e - [b]pa[ac]

Ra ([la][be]
{MNMH

Figure 6: Operator generation graph.

2.4 Duplicates generated

We derived a factor of b — 1 of duplicate elements
over new elements in the simple graph model of
the introduction, where we also gave an example
for a query of 5 relations. The naive model used
there, however, did not take into account the look-
up table used by the Volcano-type optimizers. The
next Theorems deal with the details of the new
structure.

Lemma 1. The number of duplicates generated
during the exploration of a class that combines k
relations, on a completely connected graph, is: 3% —
3x2F 44,

Proof. In a class that combines k relations,
take an operator [L] > [R], with ! the number
of relations in [L] and k — [the number of
relations in [R] (0 < k < n). Applying com-
mutativity and associativity on this operator we
generate (2! — 2) + 1 alternatives. So the total
number of operators generated in the class is

k-1 [k

=1 | g (2!—1). Rewriting, the summation

becomes 3F — 281 4+ 1. The maximum number

of unique operators in such class is 2F — 2
and of these elements the initial operator is
given instead of being generated. Therefore the
number of duplicates in the class is: 3% —2F+1 4+
1—(2*—2-1)=3%k-3x2F 4. .

Theorem 2. The number of duplicates generated
during the construction of a look-up table encoding
the alternatives for a query with n relations, on a
completely connected graph, is: 4™ — 3"+ 4 2n+2 _
n— 2.

Proof. The look-up table consists of Z
classes that combine k relations. In the class
with only one relation no duplicates are gener-
ated since no transformation rule can be applied.

Using Lemma 1 the total number of duplicates

generated is > p_; (Z) (3 — 3 x2F +4) .

Rewriting results in: 4™ — 3"+! 42742 _p 2,
n

Figure 3 shows concrete numbers for the size
of the look-up table and the duplicates generated,
as a function of the number of relations joined, for
fully connected graphs. The second column gives
the number of bushy join trees, without considering
any sharing. The number of operators needed to
encode these trees in the look-up table is given
in column 3. The advantage of sharing common
subtrees in the look-up table is clear. The last
column shows the number of duplicate operators
generated during exploration. Theorem 1 and 2
show that the ratio of duplicates over new elements

is O(zn 10g(4/3)).

3 Duplicate-free join order genera-
tion

To avoid the generation of duplicates, information
about the behaviour of transformation rules is
used. For example, if an element was generated by
applying the commutativity rule, there is no point
in applying that rule again, because it will result
in the original element.

To determine by which rule a join operator has
been generated a “derivation history” is recorded
for each element. This is done by keeping track
of rules that are still worth applying [GL95]. For
example, the application of the commutativity rule
will switch the commutativity rule off in the rule
set of the resulting element.

In the next section, we present a set of transfor-
mation rules, together with an application schema,
that generates all alternative “bushy” join trees for
acyclic join queries, without generating duplicates.

3.1 Duplicate free transformation
rules for acyclic queries

To generate all alternative “bushy” join trees for
acyclic query graphs we use the following transfor-
mation rules:

R, : Commutativity z<q y — y <y &
Disable all rules R;, Ry, R3 for application on
the new operator <.

R> : Right associativity (z 0<p y) b<y 2 — z X
(y b3 2)
Disable rules Ry, R3 for application on the new
operator ts.
Start new class with new operator <z, with all
rules enabled.

R; : Left associativity z <p (y <1 z) — (z Mo
y) X3 2z
Disable rules Ry, R3 for application on the new
operator 3.
Start new class with new operator iy with all
rules enabled.

For example, consider a query with predicates
between relations (w,z),(z,v),(y,2). Using the
initial element [wz] < [yz] of a class and the
fully explored classes of “wz” and “yz” the three
transformation rules generate the following five sets
of elements. Sets 1,2 and 3 are generated using the
initial element. Sets 4 and 5 are generated using
the elements of set 1 and 2. Join [wz] &< [yz] must
be a valid join tree (i.e. no Cartesian products) of
an acyclic query graph.

Set 1: [wz] > [yz] B {[w] < [zyz]}. Associativity
produces only one valid result. Since the
graph is connected and acyclic, there must
be a predicate between yz and either w or
x, but not both; say it is between yz and
z. A subquery combining tables wyz would
have to use a Cartesian product, which is
invalid. Therefore, Ry generates only one valid
alternative. The same argument applies on the
associativity rule used for Set 2 below.

Set 2: [wa] o [yz] 3 {[way] o< [2]}.
Set 3: [wa] > [yz] B [y2] o [wa].

Set 4: {[w] b [zy2]} B {[zy2] o< [w]}.
Set 5: {[way] pa [2]} B {[2] o< [way]}.

Keeping a summary of the derivation history for
each operator increases the memory requirements.
However, the applicability of a rule can be encoded
using a single bit per operator. With three trans-
formation rules each operator then only needs 3
bits of memory to store the derivation history.

Theorem 3. No duplicates are generated when
applying the transformation rules Ry, Rs and Rs.

Proof. Two operators can not be identical
if they are both generated by the same rule
(elements of the same set). Namely, rule Ry
is used to generate mirror images of operators,
since the left and right operand will never
be identical a duplicate can not be generated.
Rule Ry combines the unique operators of the
left child with the right operand of the initial
operator resulting in only unique operators. The
same holds for rule Rj3.

Also, no two derivation paths can result in the
same operator (elements of different sets). Sup-
pose the application of rule Ry (Set 1) generated
the same element as rule R3;R; (Set 5), then
[w] > [zyz] has to be equal to [2] > [way].
This can not be true since w, z, y, z are disjunct
non-empty sets of relations, so [w] # [z] and
[zyz] # [wzy]. A similar argument can be given
for any other combination of sets. [

Theorem 4. For acyclic query graphs the
transformation rules Ry, Rs and Rs generate all
valid join orders.

Proof. Since the query graph is acyclic, each
join operator that can serve as root for a valid
join tree corresponds to an edge of the query
graph. So for a query graph with n relations
the number of join operators in the root class
is A(n) = 2% (n — 1), when the mirror images
are included. Note that each explored class
describes all valid roots of the corresponding
acyclic sub-graph.

Using the initial element of a class, say [L] &< [R],
the transformation rules generate the following
new elements. Rule Ry combines each element
of class [L] with [R], of these new combinations
only half is valid since a class contains mirror
images and only one can lead to a new valid join
operator. This means that rule Rp generates
A(]L|)/2 new operators, with |L| denoting the
number of operators of class L. Similarly rule
Rs3 generates A(|R|)/2 new operators. Finally
rule Ry generates for each new operator and the
initial operator a mirror image which results in
2+(1+A(|L])/2+A(|R[)/2) = 2+A(|L])+A(|R])
elements for the fully explored class.

Now, 2+ A(|L|) + A(|R|) = A(|L| + | R|), which
is the number of join operators for the fully
explored class with |L| + |R| relations. Since,
by Theorem 1, no duplicate operators were
produced, we must have generated all valid join
orders. n

3.2 Acyclic example

Given a query G = {{a,b,c,d,e},{a—b,b—c,c —
d,c — e}} and the following look-up table, where
the class “abcede” is about to be explored. Of the
initial operator of class “abcde” the child classes
have been explored exhaustively.

abcde = [ab] i< [cde]

cde = [d] o< [ce]; [e] bt [ed];
[ce] > [d]; [ed] p< [e]
ab = [a] < [b]; [b] < [a]
ce = [c] = [e]; [€] > [¢]
cd = [c]ead];[d]]

Figure 7: Look-up table in which [ab] > [ede] is
about to be explored.

Applying the transformation rules R;, Ry and
R; to [ab] < [cde] results in generating the following
elements.

Rule Ry: [a] < [bede].
The element [b] < [acde] is considered by the
associativity rule, but rejected, because there
is no valid join tree for “acde” (we would be
force to introduce a Cartesian product because
there is no predicate between a and any of

¢ d,e).

Rule Rj3: [abee] > [d], [abed)] < [e].
The elements [abd] i< [ce] and [abe] b< [ed] are
considered but rejected because there are no
valid join trees for “abd” and “abe”.

Rule R;: [ede] 1< [a],[d]

[abee], [e] < [abed]

[ab], [bede] <

The fully explored class “abcde” contains all 8
elements. During the exploration process the new
classes [bede], [abee] and [abed] are created and, in
turn, fully explored.

4 Conclusion

In this paper we described the problem of gener-
ation of duplicate plans, for transformation-based
optimizers that explore a space exhaustively. De-
spite the exponential size of the space, exhaustive
search is used in practice. We are aware of at
least two commercial DBMSs under development
that are using a Volcano-type optimizer based on
exhaustive search.

We showed that the number of duplicates ex-
ceeds the number of new elements even for small
queries, and it increases dramatically with the size
of the query. In particular, for the Volcano-type
optimizers the ratio of duplicates over new elements

is O(2"1°8(4/3)), The detailed complexity analysis
developed here is the first that we are aware of, for
this type of optimizers.

Our approach to an efficient search is to keep
track of the transformation rules that can still
be applied without generating duplicates. The
mechanism is described in detail, for the generation
of all valid join trees for acyclic query graphs.!

The conditioned application of rules can be in-
corporated easily in the existing framework of mod-
ern query optimizers, and preliminary tests corrob-
orate that considerable performance improvements
result from the large reduction of generated ele-
ments. For queries of 8 relations a performance
improvement of a factor 3 to 5 has been achieved.
For arbitrary sets of transformation rules it might
be hard to transform them into an efficient set.
However, the performance improvement gained
by avoiding duplicate generation is significant in
practice, and it should be used whenever possible.

Determining which set of arbitrary transforma-
tion rules can be converted into a duplicate-free set,
and the interaction with other rules is our current
focus of research.

References

[GCD194] G. Graefe, R. L. Cole, D . L. Davi-
son, W. J. McKenna, and R. H. Wol-
niewicz. Query Processing for Advanced
Database Systems. Morgan Kaufmann,
1994.

[GL95] C. A. Galindo-Legaria. Dart V4.0 Op-
timizer: Join Reordering, August 1995.

Manuscript.

[GLPK94] C. A. Galindo-Legaria, A. Pellenkoft,
and M. L. Kersten. Fast, randomized
join-order selection —Why use trans-
formations? In Proceedings of the
Twentieth International Conference on
Very Large Databases, Santiago, 1994.

Also CWI Technical Report CS-R9416.

[GLPK95] C. A. Galindo-Legaria, A. Pellenkoft,
and M. L. Kersten. Uniformly-
distributed random generation of join
orders. In Proceedings of the Interna-
tional Conference on Database Theory,
Prague, pages 280-293, 1995. Also CWI

Technical Report CS-R9431.

[GM93] G. Graefe and W. J. McKenna. The
Volcano optimizer generator: Exten-
sibility and efficient search. Proced-

ings of the 9th International Conference

1We have derived duplicate-free transformation rules for
other spaces [PGLK96].

[IK90]

[IK91]

[LVZ93]

[OL90]

[PGLK96]

[SGs8]

on Data Engineering, Vienna, Austria,
pages 209-218, 1993.

Y. E. Joannidis and Y. C. Kang.
Randomized algorithms for optimizing
large join queries. Proc. of the ACM-
SIGMOD Conference on Management
of Data, pages 312-321, 1990.

Y. E. Ioannidis and Y. C. Kang. Left-
deep vs. bushy trees: An analysis of
strategy spaces and its implications for
query optimization. Proc. of the ACM-
SIGMOD Conference on Management
of Data, pages 168—-177, 1991.

R. S. G. Lanzelotte, P. Valduriez, and
M. Zait. On the effectiveness of op-
timization search strategies for par-
allel execution spaces. Proc. of the
19th VLDB Conference, Dublin, Ire-
land, pages 493-504, 1993.

K. Ono and G. M. Lohman. Measur-
ing the complexity of join enumeration
in query optimization. Proc. of the
16th VLDB Conference, Brisbane, Aus-
tralia, pages 314-325, 1990.

A. Pellenkoft, G.A. Galindo-Legaria,
and M.L. Kersten. Complexity of
transformation based optimizers and
duplicate free generation of alterna-

tives. Technical Report CS-R9639,
CWI, 1996.

A. N. Swami and A. Gupta. Opti-
mization of large join queries. Proc.

of the ACM-SIGMOD Conference on
Management of Data, pages 817, 1988.

